X-Band GaAs pHEMT High Power Amplifier

Product Description

MECX10W-3 is a 0.25µm GaAs pHEMT based High Power Amplifier designed by MEC for X-Band applications.

The MECX10W-3 provides more than 11W of saturated output power in the frequency range from 8.5 GHz to 11.1 GHz, with PAE up to 44% and 27 dB of small signal Gain.

The MECX10W-3 is fully matched to 50 Ω with DC decoupling capacitors on both Input and Output ports. Bond Pad are gold plated for compatibility with thermo-compression bonding process.

Main Features

- 0.25µm GaAs pHEMT Technology
- 8.5 11.1 GHz full performances Frequency Range
- Saturated Output Power $\geq 11W$
- PAE = 35% 44%
- Small Signal Gain > 27 dB
- Bias: Vd = 8V, Id = 2.5A,
 Vg = -0.45V (Typ.)
- Chip Size: 5 x 3.3 x 0.07 mm

Typical Applications

- Radar
- Telecom

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Main Characteristics

Test Conditions: $T_{base_plate} = 25^{\circ}C$, Vd = 8 V, Idq = 2.5 A, Pulse Width = 100 μ s, Duty Cycle = 30%

Parameter	Min	Тур	Max	Unit
Operating frequency	8.5		11.1	GHz
Small Signal Gain		31		dB
Input Return Loss	-20		-10	dB
Output Return Loss		-10		dB
Saturated Output Power		40.5		dBm
Power Added Efficiency @ Pout=Psat	35		44	%
Gain @ Pout=Psat		27		dB
Drain Supply Voltage		8.0		V
Supply Quiescent Drain Current		2.5		А
Supply Drain Current	3.2		4.2	А
Psat Vs. Temperature		-0.007		dB/°C
PAE @Psat Vs. Temperature		-0.03		%/°C
Drain Current @Psat Vs. Temperature		-0.004		A/°C
Linear Gain Vs. Temperature		-0.042		dB/°C

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Absolute Maximum Rating*				
Parameter	Values	Unit		
Compression Level	6	dB		
Drain Supply Voltage with RF input Power	9.0	V		
Drain Supply Voltage without RF input Power	10	V		
Supply Quiescent Drain Current	3.5	А		
Max. forward gate current	14	mA		
Max. negative gate source voltage	-2.5	V		
Max. negative gate drain voltage	-10	V		
Maximum junction temperature	175	°C		

* Tamb = $25^{\circ}C$

Thermal and Reliability Information*			
Test Conditions	Parameter	Values	Unit
VD = 8.0 V, ID = 2.5 A PDC = 20W, No RF Input Tbaseplate = 80°C	Equivalent Thermal Resistance (No RF Drive)	4	°C/W
	Channel Temperature (No RF Drive)	160	°C
	Mean Time Failure (No RF Drive)	3E+5	Hrs
VD = 8.0 V, ID = 3.8 A PDC =30 W, Pout= 41dBm Tbaseplate = 80°C	Thermal Resistance (Under RF Drive) **	3.5	°C/W
	Channel Temperature (Under RF Drive)	142	°C
	Mean Time Failure (Under RF Drive)	2.8E+6	Hrs

* Assumes eutectic attach using 1.5 mil thick 80/20 AuSn mounted to a 20 mil CuMo Carrier Plate.
 ** Equivalent Thermal Resistance under RF Drive takes into account the amount of the power dissipated by a resistor on the DC Drain paths of the first stage of the HPA.

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Small Signal Measurements

Broadband Small Signal Measurements

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Measured Performances Vs. Pin @ Frequency [9, 9.7, 10.4] GHz

MEC – Microwave Electronics for Communications www.mec-mmic.com

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

X-Band GaAs pHEMT High Power Amplifier

Measured Performances Vs. Frequency @ 1dB of Gain Compression

MEC – Microwave Electronics for Communications www.mec-mmic.com

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Measured Performances Vs. Frequency @ Saturation

Measured Performances Vs. Frequency @ Temperature [-30, 20, 80]°C

MEC – Microwave Electronics for Communications www.mec-mmic.com

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

- 10/13 -

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Bond Pad Configuration

- A tolerance of $\pm 35 \mu m$ has to be considered for chip dimensions
- Chip Thickness is $70 \ \mu m \pm 10 \ \mu m$
- RF Pads [IN, OUT] = 118µm x 196µm
- DC Pads [1, 2, 3, 4, 5, 7, 10, 11, 14, 16, 17, 18, 19, 20] = 100µm x 100µm
- DC Pads [6, 8, 13, 15] = 200µm x 100µm
- DC Pads [9, 12] = 300µm x 100µm

Bond Pad #	Symbol	Description	
IN	RFin	Input RF Port	
OUT	RFout	Output RF Port	
1, 3, 5, 16, 18, 20	Vg	Gate Negative Supply Voltage	
6, 8, 9, 12, 13, 15	Vd	Drain Positive Supply Voltage	
2, 4, 7, 10, 11, 14, 17, 19	GND	Ground Pads – Not Connected	

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Assembly Recommendations

Bond Pad #	Connection	External Components	
IN and OUT	2 Bonding Wires L_bond = 0.3nH		
1, 3, 5, 16, 18, 20 Vg	$L_{bond} \le 1 \text{ nH}$	C1 = 100 pF/10V C2 = 10 nF/10V	
6, 8, 13, 15 Vd	2 Bonding Wires L_bond ≤ 1nH	<u>Pulsed mode</u> C1 = 100pF/50V	
9, 12 Vd	3 Bonding Wires L_bond ≤ 1nH	<u>CW mode:</u> C1 = 100pF/50V C2 = 10nF/50V	

- Eutectic Die bond using AuSn (80/20) solder is recommended.
- Great care must be used for thermal dimensioning.
- The backside of the die is the Source (ground) contact.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- Gold wire must be used for connections.

Bias Procedure

Bias-Up

- 1. Vg set to -1.5 V.
- 2. Vd set to +8 V.
- 3. Adjust Vg until quiescent Id is 2.5 A (Vg = -0.45 V Typical).
- 4. Apply RF signal.

Bias-Down

- 1. Turn off RF signal.
- 2. Reduce Vg to -1.5 V (Id0 \approx 0 mA).
- 3. Set Vd to 0 V.
- 4. Turn off Vd.
- 5. Turn off Vg.

- 12/13 -

X-Band GaAs pHEMT High Power Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Contact Information

For additional technical Information and Requirements:

Email: contact.mec@mec-mmic.com

Tel: +39 0516333403

For sales Information and Requirements:

Email: sales@mec-mmic.com

Tel: +39 0516333403

Notice

The furbished information is believed to be reliable.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.