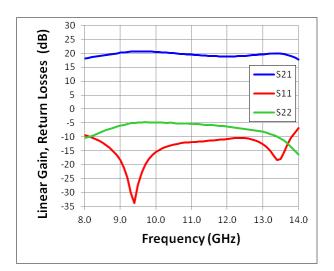

X-Ku-Band 0.5Watt Wideband Power Amplifier MICROWAVE ELECTRO

MECWideX is a 0.25µm GaAs pHEMT based wideband Power Amplifier designed by MEC for X- to Ku-Band applications.

In the frequency range from 8.0 GHz to 14 GHz it provides more than 18 dB of linear gain and input return loss better than 10 dB.

When driven at 1 dB of Gain compression it gives an output power greater than 27 dBm which increase to 29 dBm at saturation. It is also designed to be very efficient in the whole wide frequency band: PAE is above 35% at 1 dB of gain compression and reaches nearly 40% at saturation.


Main Features

- 0.25µm GaAs pHEMT Technology
- 8.0 14.0 GHz full performance Frequency Range
- Small Signal Gain > 18 dB
- Input Return Loss > 10 dB
- P1dB > 27 dBm
- Psat > 29 dBm
- PAE > 35 %
- Bias: Vd = 6V, Id = 190mA,
 Vg = -0.5 V (Typ.)
- Chip Size: 2.31 x 2.00 x 0.07 mm³

Typical Applications

- Point-to-Point Radio
- X- to Ku-Band Driver

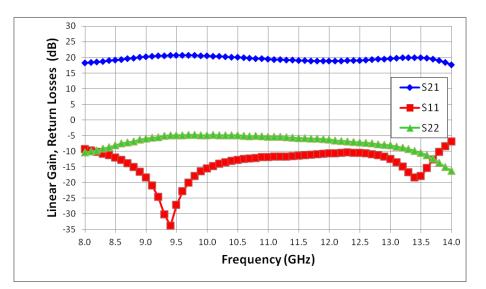
Measured Data

X-Ku-Band 0.5Watt Wideband Power Amplifier MICROWAVE ELECTRONICS FOR COMMUNICATIONS

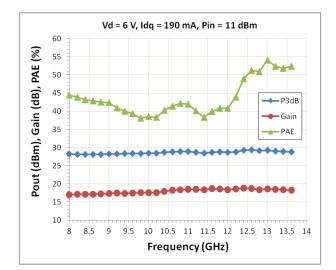
Main Characteristics

Test Conditions:	$T_{base_plate} = 25^{\circ}C$, Vd = 6 V, Idq = 190 mA
------------------	---------------------------------	--------------------------

Parameter	Min	Тур	Max	Unit
Operating frequency	8.0		14.0	GHz
Small Signal Gain	18			dB
Input Return Loss			-10	dB
Output Return Loss			-5	dB
Output Power at 1 dB of Gain Compression	27			dBm
Saturated Output Power (3 dB of Gain Compr.)	29			dBm
PAE at 1 dB of Gain Compression	35			
PAE at 3 dB of Gain Compression	38			
Drain Supply Voltage		6		V
Supply Quiescent Drain Current		190		mA

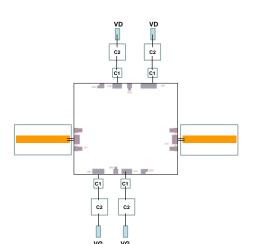

- 2/5 -

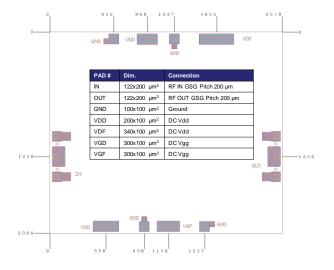



X-Ku-Band 0.5Watt Wideband Power Amplifier MICROWAVE ELECTRONICS

MECWideX - Selected Measurements

Test Conditions: $T_{base_plate} = 25^{\circ}C$, Vd = 6 V, Idq = 190 mA





X-Ku-Band 0.5Watt Wideband Power Amplifier MICROWAVE ELECTRONICS FOR COMMUNICATION

Bond Pad Configuration & Assembly Recommendations

Bond Pad #	Connection	External Components	
IN and OUT	2 Bonding Wires L_bond = 0.2nH		
VDD VDF	$L_{bond} \le 1 \text{ nH}$	C1 = 100pF/10V C2 = 10nF/10V	
VGD VGF	$L_{bond} \le 1nH$	C1 = 100 pF/50V C2 = 10 nF/50V	

Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

Bias Procedure

Bias-Up

- 1. Vg set to 1.5 V.
- 2. Vd set to +6 V.
- Adjust Vg until quiescent Id is 190 mA (Vg = -0.5 V Typical).
- 4. Apply RF signal.

Bias-Down

- 1. Turn off RF signal.
- 2. Reduce Vg to -1.5 V (Id0 \approx 0 mA).
- 3. Set Vd to 0 V.
- 4. Turn off Vd.
- 5. Turn off Vg.

X-Ku-Band 0.5Watt Wideband Power Amplifier MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Contact Information

For additional technical Information and Requirements:

Email: contact.mec@mec-mmic.com

Tel: +39 0516333403

For sales Information and Requirements:

Email: sales@mec-mmic.com

Tel: +39 0516333403

Notice

The furbished information is believed to be reliable.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.

- 5/5 -