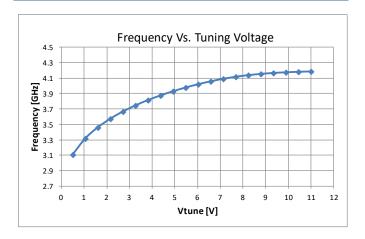

C-Band GaAs HBT VCO

Main Features

- GaAs HBT Technology
 VT1=VT2 from 1.5 to 11 V
 fout = 3.43 to 4.19 GHz
 Phase Noise = -85 dBc/Hz @ 10 kHz
- No external resonator needed
- Chip size: 2.6 x 2.33 mm²

Typical Applications


- Wireless Local Loop (WLL)
- Test equipment & industrial controls
- SAR antennas
- Military

Product Description

MECVCOC1 is a monolithic microwave integrated circuit (MMIC) voltage-controlled oscillator (VCO) designed and tested by MEC for C-Band applications. It integrates a resonator, a negative resistor device, varactor diodes and a buffer amplifier.

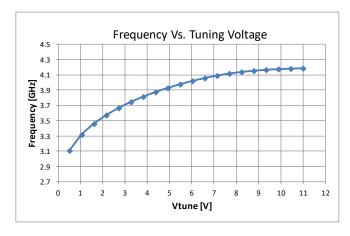
In the frequency range from 3.43 GHz to 4.19 GHz MECVCOC1 provides more than 10.2 dBm of output power and a phase noise of about -85 dBc/Hz at 10 KHz offset with 5 V supply voltage.

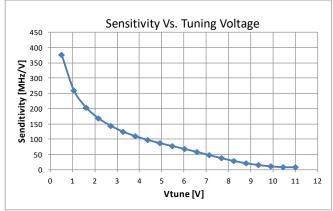
Measured Data

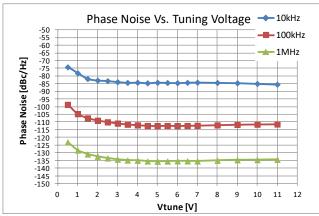
C-Band GaAs HBT VCO

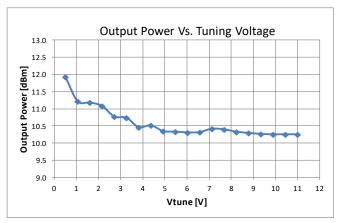
Main Characteristics

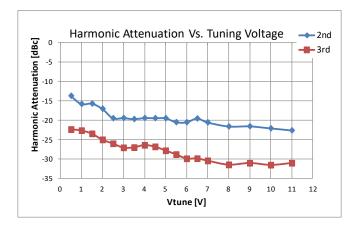
Test Conditions: $T_{base_plate} = 25 \, ^{\circ}C$

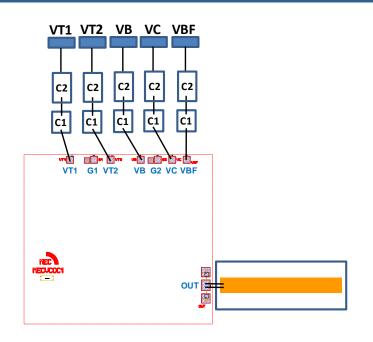

Parameter	Min	Тур	Max	Unit
Frequency Range	3.43		4.19	GHz
Output Power	10.2		11.1	dBm
Phase Noise @ 10 kHz Offset @ 100 kHz Offset @ 1 MHz Offset		-85 -112 -135		dBc/Hz dBc/Hz dBc/Hz
Tuning Voltage (VT1=VT2)	1.5		11	V
Supply Voltage (Vcc)		5		V
Supply Current (Icc)		82.5		mA
Harmonic Attenuation 2nd 3rd	-15 -23			dBc dBc
Pulling (into a 2.0:1 VSWR)			1.18	MHz_pp
Pushing @ Vtune=5V			2.6	MHz/V
Sensitivity			230	MHz/V
DC Power Consumption		0.4125		W

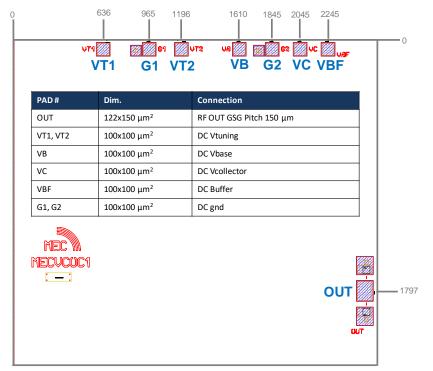

C-Band GaAs HBT VCO




Measurement Performances


Test Conditions: $T_{base_plate} = 25$ °C, Vcc = 5 V, Icc = 82.5 mA




C-Band GaAs HBT VCO

Bond Pad Configuration & Assembly Recommendations

Bond Pad#	Connection	External Components
OUT	2 Bonding Wires L_bond = 0.3 nH	
VT1 Vtuning	L_bond≤1 nH	C1 = 10nF/10V $C2 = 1\mu F/10V$
VT2 Vtuning	L_bond≤1 nH	C1 = 10nF/10V $C2 = 1\mu F/10V$
VB Vbase	L_bond≤1 nH	C1 = 10nF/10V $C2 = 1\mu F/10V$
VC Vcollector	L_bond≤1 nH	C1 = 10nF/10V $C2 = 1\mu F/10V$
VBF Vbuffer	L_bond≤1 nH	C1 = 10nF/10V $C2 = 1\mu F/10V$

Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

C-Band GaAs HBT VCO

Bias Procedure

Bias-Up

- 1. Set VT1 and VT2 to 5 V and turn on.
- 2. Set VBF to 0 V and turn on.
- 3. Increase VBF to 5 V (IBF \approx 20.5 mA).
- 4. Set VB to 0 V and turn on.
- 5. Set VC to 0 V and turn on.
- 6. Increase VC to 5 V.
- 7. Increase VB to 5 V (IB \approx 12.5 mA, IC = 49.5 mA).
- 8. Sweep VT1 and VT2 from 0.5 V to 11 V.

Bias-Down

- 1. Set VB to 0 V and turn off.
- 2. Set VC to 0 V and turn off.
- 3. Set VBF to 0 V and turn off.
- 4. Turn off VT1 and VT2.

C-Band GaAs HBT VCO

Contact Information

For additional technical Information and Requirements:

Email: contact.mec@mec-mmic.com Tel: +39 0516333403

For sales Information and Requirements:

Email: sales@mec-mmic.com Tel: +39 0516333403

Notice

The furbished information is believed to be reliable.

However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements, the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.