
### MECSCDCU

### 12 - 15 GHz to 1 – 5.5 GHz DownConverter

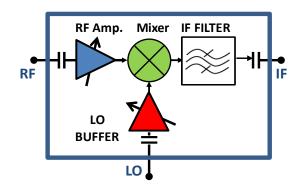




#### **Product Description**

**MECSCDCU** is a Ku band to IF band frequency converter. It is based on a 0.25  $\mu$ m GaAs pHEMT space evaluated process.

The MECSCDCU integrates in a single chip 11 dB of continuous gain variation in the conversion chain, as well as 9 dB of continuous gain variation of the LO buffer amplifier. They can be changed either statically or dynamically by means of two different control voltages. The gain variation features allow great flexibility in its integration within different systems requiring different conversion gain and LO input power.


The MECSCDCU offers a conversion gain in the range -3 dB to 8 dB, LOW-GAIN and HIGH-GAIN state respectively. Its performances remain quite uniform as a function of the LO input power from -7 to +2 dBm.

The MMIC is assembled in a hermetically sealed SMT ceramic package suitable for space applications.

#### Main Features

- 0.25µm GaAs pHEMT space evaluated process
- Full performance in the frequency bands:
  - o RF: 12.5 15 GHz
  - o LO: 8.5 12.5 GHz
  - o IF: 1 5.5 GHz
- -3 to +8 dB minimum Conversion Gain
- 11 dB Conversion Gain variation
- -7 to +2 dBm of LO input power with same conversion performance
- Fixed Bias: VDD = 3V, Idq = 105 mA
- Conversion Gain control: VC1 = -5 to 0 V
- LO power control: VC2 = -5 to 0 V
- Fully matched to 50 Ω, with integrated RF to DC decoupling
- Assembled in a hermetically sealed SMT ceramic package

#### Functional Block Diagram



#### Applications

- Radar
- Defence
- Space
- Itar-free





#### Nominal Operating Conditions

| Parameter   | Min   | Тур. | Max   | Units |
|-------------|-------|------|-------|-------|
| Temperature | -40   | +25  | +85   | °C    |
| Range       |       |      |       |       |
| VD1         |       | 3    |       | V     |
| ID1         |       | 32   |       | mA    |
| VG1         |       | -0.4 |       | V     |
| IG1         |       | 0    |       | mA    |
| VC1         | -5    |      | 0     | V     |
| IC1         |       | 0    |       | mA    |
| VD2         |       | 3    |       | V     |
| ID2         |       | 73   |       | mA    |
| VG2         |       | -0.4 |       | V     |
| IG2         |       | 0    |       | mA    |
| VC2         | -4.25 | -3   | -1.25 | V     |
| IC2         |       | 0    |       | mA    |
| PDC_RF      |       |      | 96    | mW    |
| PDC_LO      |       |      | 219   | mW    |
| PDC         |       |      | 315   | mW    |
| P_RF_state1 | -45   |      | -35   | dBm   |
| P_RF_state2 | -35   |      | -25   | dBm   |
| P_LO        | -7    |      | +2    | dBm   |

- When operates under these recommended conditions, the device is compliant with ESA space-derating rules.
- Electrical specifications are measured at specified test conditions.
- Control voltages configuration:
  - VC1 (RF gain control):
     5 V for High Gain; 0 V for Low-Gain
- VC2 (To equalize performance Vs. P\_LO variation):
   -4.25 V @ P\_LO [-7÷-4] dBm
   -3.0 V @ P\_LO [-3÷-1] dBm
   -1.25 V @ P\_LO [0÷-2] dBm
- The continuous gain variation features can be achieved by applying a continuous variation to VC1.

#### **Absolute Maximum Rating**

| Parameter                      | Rating         |
|--------------------------------|----------------|
| VD                             | 4 V            |
| VG                             | -1.5 to 0 V    |
| Channel temperature, TJ        | 175 °C         |
| PDC (T = 85 °C; VD = 4V)       | 540 mW         |
| RF Input Power @ High-Gain     | 8 dBm          |
| RF Input Power @ Low-Gain      | 10 dBm         |
| LO Input Power                 | 10 dBm         |
| Mounting Temperature (<30 sec) | 260 °C         |
| Storage Temperature            | -55 to +150 °C |

These parameters are carried out from specific stress test analysis.

Operation of this device outside of these ranges may cause permanent damage.

#### Thermal and Reliability Information

| Conditions                                                                                      | Parameter                           | Value      |
|-------------------------------------------------------------------------------------------------|-------------------------------------|------------|
| Worst case operating conditions:                                                                | Equivalent<br>Thermal<br>Resistance | 100 °C/W   |
| VD1 = 3 V, ID1 = 32 mA<br>VD2 = 3 V, ID2 = 73 mA<br>VC1 = -1.0 V<br>VC2 = -2.8 V                | Channel<br>Temperature              | 125 °C     |
| $P_RF = -25 \text{ dBm}$<br>$P_LO = +2 \text{ dBm}$<br>Pdiss = 400  mW<br>$Tbase = 85^{\circ}C$ | Mean Time<br>Failure                | > 2E+7 hrs |

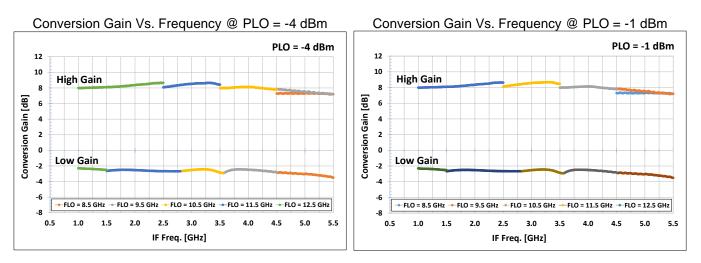




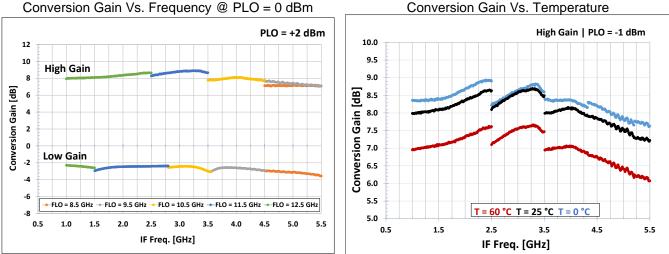
#### **Electrical Characteristics**

Test conditions unless otherwise noted: Tbase = 25°C, VD1 = 3 V, VG1 = - 0.4 V, ID1 = 32 mA, VD2 = 3 V, VG2 = - 0.4 V, ID2 = 73 mA, VC2 = -4.25 V, P\_LO = -4 dBm.

| Parameter                                                                     | Min.       | Тур          | Max        | Units     |
|-------------------------------------------------------------------------------|------------|--------------|------------|-----------|
| Input Frequency Range (RF)                                                    | 12.5       |              | 15         | GHz       |
| Output Frequency Range (IF)                                                   | 1          |              | 5.5        | GHz       |
| LO Frequency Range (LO)                                                       | 8.5        |              | 12.5       | GHz       |
| RF Input Power Range                                                          |            |              |            |           |
| High-Gain<br>Low-Gain                                                         | -45<br>-35 |              | -35<br>-25 | dBm       |
| LO Input Power Range                                                          | -35<br>-7  | -3           | +2         | dBm       |
| Conversion Gain                                                               |            |              |            |           |
| High-Gain<br>Low-Gain                                                         |            | +8<br>-3     |            | dB<br>dB  |
| Conversion gain difference between states                                     |            | 11 ± 2       |            | dB        |
| Conversion Gain Flatness                                                      |            |              | 2          | dBpp      |
| Conversion Gain Variation with LO Drive Level                                 |            |              | 1          | dBpp      |
| Noise Figure (SSB)                                                            |            |              | _          |           |
| High-Gain<br>Low-Gain                                                         | 2.5<br>6.5 |              | 3<br>8     | dB        |
| Output P1dB                                                                   | 0.0        |              | 0          | uD        |
| High-Gain                                                                     |            | -6           |            | dBm       |
| Low-Gain Output IP3 level                                                     |            | -7           |            | dBm       |
| High-Gain                                                                     | 5          |              | 11         | dBm       |
| Low-Gain                                                                      | 6          |              | 15         | dBm       |
| LO to IF Isolation                                                            |            | 40           |            | dB        |
| Input Return Loss                                                             | 7          |              | 25         | dB        |
| Output Return Loss                                                            | 10         |              |            | dB        |
| LO Input Return Loss                                                          | 10         |              |            | dBc       |
| In-band Mixing Spurious Levels                                                | 50         |              |            | dBc       |
| Close to In-band Mixing Spurious Levels<br>(IF bandwidth of 5.5 GHz to 7 GHz) | 50         |              |            | dBc       |
| 2LO x -RF Spurious                                                            | 10         |              |            | dBc       |
| 3LO x -RF Spurious                                                            | 50         |              |            | dBc       |
| IF Spurious Harmonic Level                                                    | 50         |              |            | dBc       |
| Power Consumption                                                             |            |              | 0.315      | W         |
| Packaged Size<br>Body Dimensions<br>Package Height                            |            | 6 x 6<br>2.5 |            | mm²<br>mm |



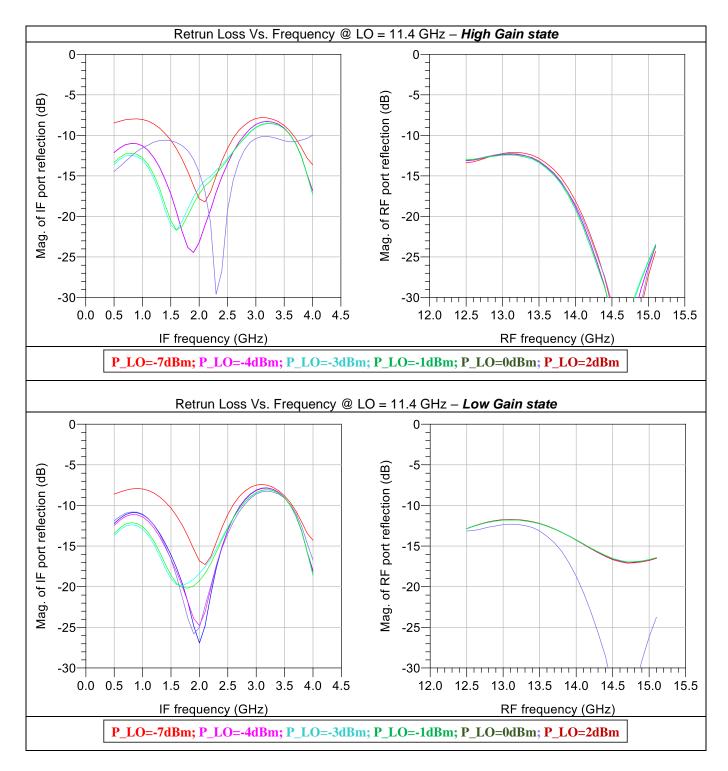

#### Main Performance – Conversion Gain


Test conditions unless otherwise noted: Tbase = 25°C, VD1 = 3 V, VG1 = - 0.4 V, ID1 = 32 mA, VD2 = 3 V, VG2 = - 0.4 V, ID2 = 73 mA. VC1 = -5 V (High-Gain) and 0 V (Low-Gain); VC2 = -4.25 V (P\_LO = -4 dBm), -3 V (P\_LO = -1 dBm) and -1.25 V  $(P_LO = 1 dBm)$ 

| Specific Conversion Scheme |     |     |         |      |      |     |
|----------------------------|-----|-----|---------|------|------|-----|
| LO freq                    | 8.5 | 9.5 | 10.5    | 11.5 | 12.5 | GHz |
| Syn. #                     | 1   | 2   | 3       | 4    | 5    |     |
|                            |     |     |         |      |      | 1   |
| <b>RF</b> freq             |     |     | IF freq |      |      |     |
| 12.5                       | 4.0 | 3.0 | 2.0     | 1.0  | 0.0  |     |
| 13.0                       | 4.5 | 3.5 | 2.5     | 1.5  | 0.5  |     |
| 13.5                       | 5.0 | 4.0 | 3.0     | 2.0  | 1.0  | Ī   |
| 14.0                       | 5.5 | 4.5 | 3.5     | 2.5  | 1.5  |     |
| 14.5                       | 6.0 | 5.0 | 4.0     | 3.0  | 2.0  |     |
| 15.0                       | 6.5 | 5.5 | 4.5     | 3.5  | 2.5  |     |
| GHz                        | GHz | GHz | GHz     | GHz  | GHz  | ]   |

#### Spacific C Cohomo







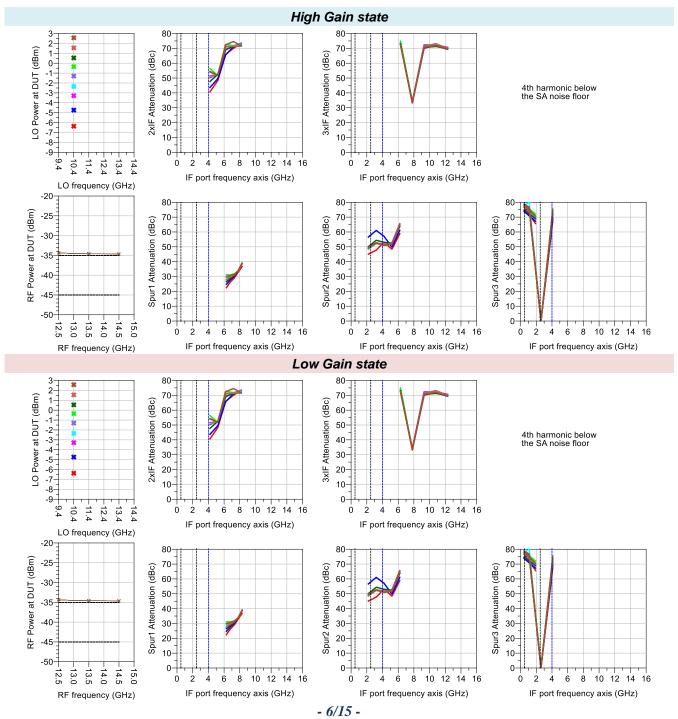



#### Main Performance – Return Loss

Test conditions unless otherwise noted: Tbase =  $25^{\circ}$ C, VD1 = 3 V, VG1 = - 0.4 V, ID1 = 32 mA, VD2 = 3 V, VG2 = - 0.4 V, ID2 = 73 mA. VC1 = -5 V (High-Gain) and 0 V (Low-Gain); VC2 = -4.25 V (P\_LO = -7, -4 dBm), -3 V (P\_LO = -3, -1 dBm) and 1.25 V (P\_LO = 0, 2 dBm)



| - 5/15 - |  |
|----------|--|
|----------|--|

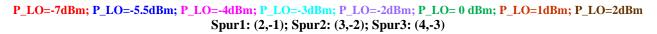


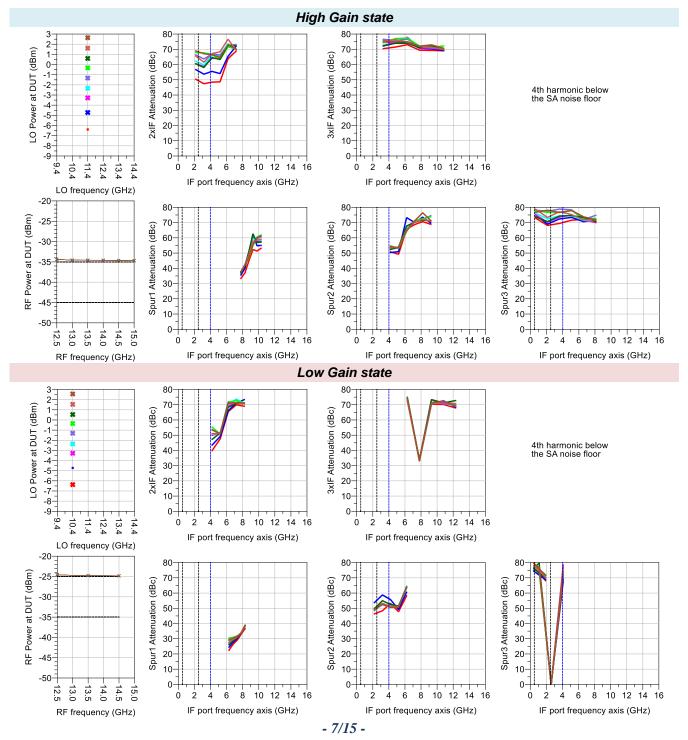

#### Main Performance – IF harmonics and Spurious tones (F\_LO = 9.4 GHz)

Test conditions unless otherwise noted: Tbase = 25°C, VD1 = 3 V, VG1 = - 0.4 V, ID1 = 32 mA, VD2 = 3 V, VG2 = - 0.4 V, ID2 = 73 mA. VC1 = -5 V (High-Gain) and 0 V (Low-Gain); VC2 = -4.25 V (P\_LO = -7, -4 dBm), -3 V (P\_LO = -3, -1 dBm) and 1.25 V (P\_LO = 0, 2 dBm)

#### F\_LO = 9.4 GHz

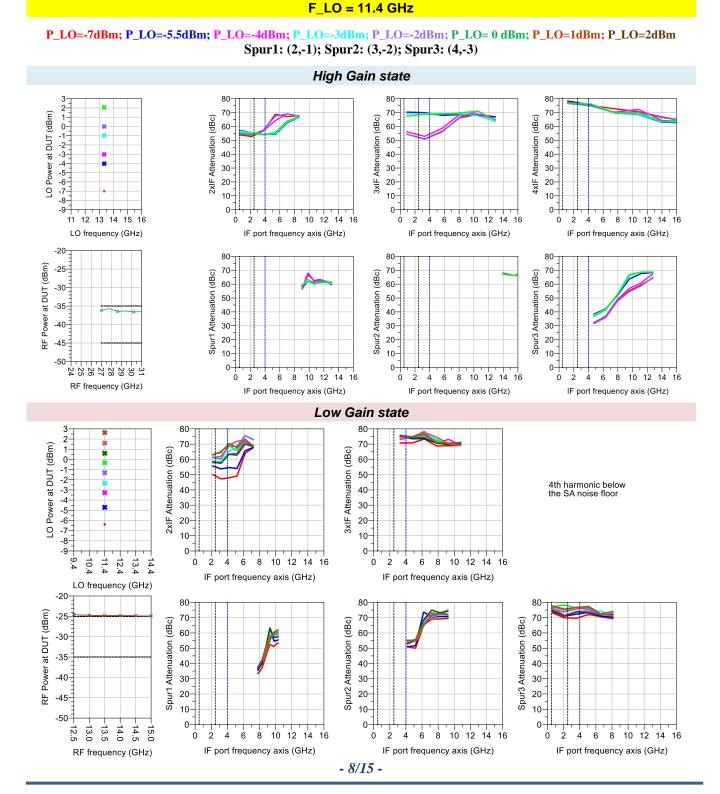






Data Sheet *MECSCDCU* Subject to change without notice



#### Main Performance – IF harmonics and Spurious tones (F\_LO = 10.4 GHz)

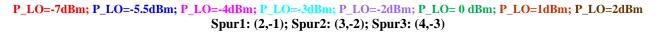

F\_LO = 10.4 GHz

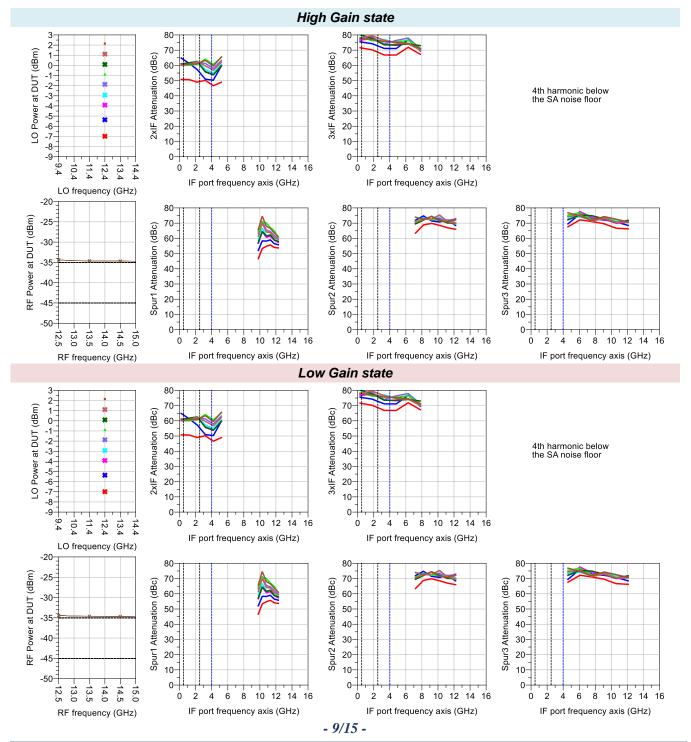






#### Main Performance – IF harmonics and Spurious tones (F\_LO = 11.4 GHz)



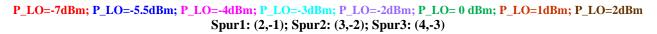


Data Sheet *MECSCDCU* Subject to change without notice

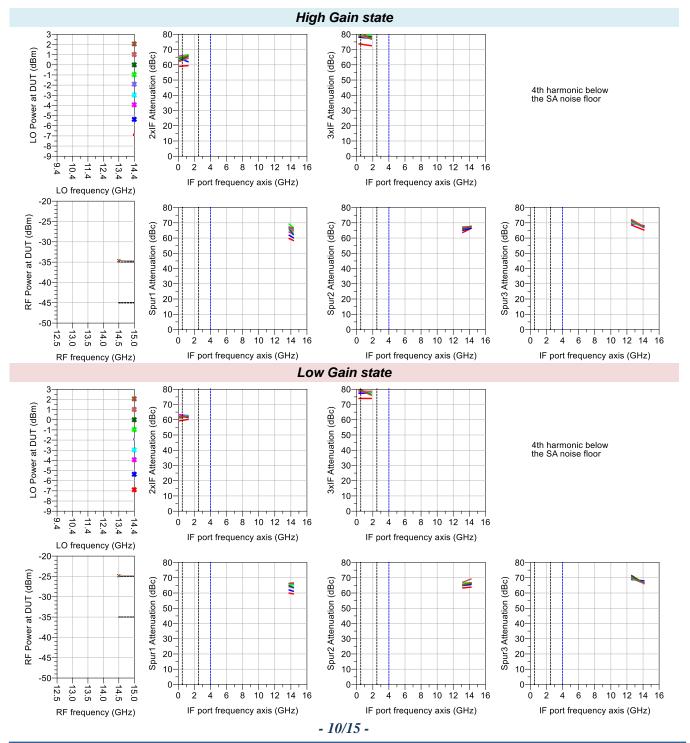


### Main Performance – IF harmonics and Spurious tones (F\_LO = 12.40 GHz)

F\_LO = 12.40 GHz







Data Sheet *MECSCDCU* Subject to change without notice



#### Main Performance – IF harmonics and Spurious tones (F\_LO = 13.40 GHz)

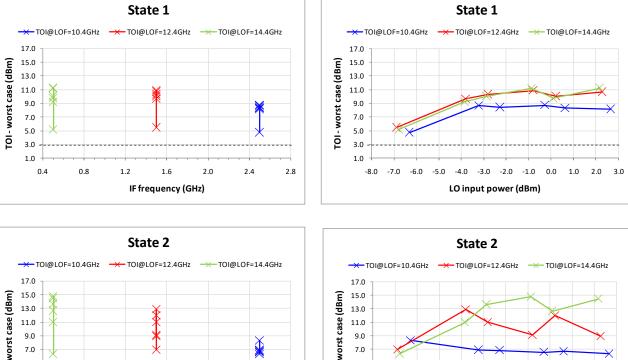
F\_LO = 13.4 GHz





Data Sheet *MECSCDCU* Subject to change without notice




#### Main Performance – Third Order Intercept Point

Test conditions unless otherwise noted: Tbase = 25°C, VD1 = 3 V, VG1 = - 0.4 V, ID1 = 32 mA, VD2 = 3 V, VG2 = - 0.4 V, ID2 = 73 mA. VC1 = -5 V (High-Gain) and 0 V (Low-Gain); VC2 = -4.25 V (P\_LO = -7, -4 dBm), -3 V (P\_LO = -3, -1 dBm) and 1.25 V (P\_LO = 0, 2 dBm). RF frequencies = 12.9, 13.9, 14.9 GHz.

Worst Case TOI as a function of the IF frequency. P\_RF (DCL) = -35 dBm (High Gain - State 1) P\_RF (DCL) = -25 dBm (Low Gain - State 2)

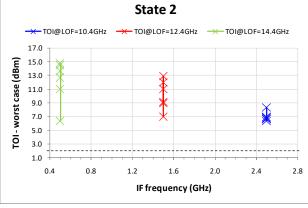


Worst Case TOI as a function of the P\_LO power P\_RF (DCL) = -35 dBm (*High Gain – State 1*) P\_RF (DCL) = -25 dBm (Low Gain - State 2)



9.0

7.0 5.0


3.0

1.0

-8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

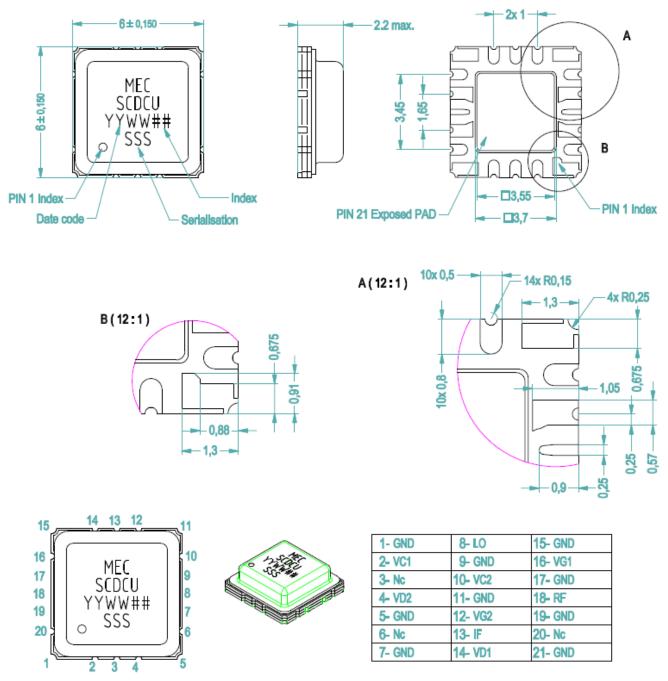
LO input power (dBm)

ē



Data Sheet MECSCDCU

Subject to change without notice


- 11/15 -

1.0

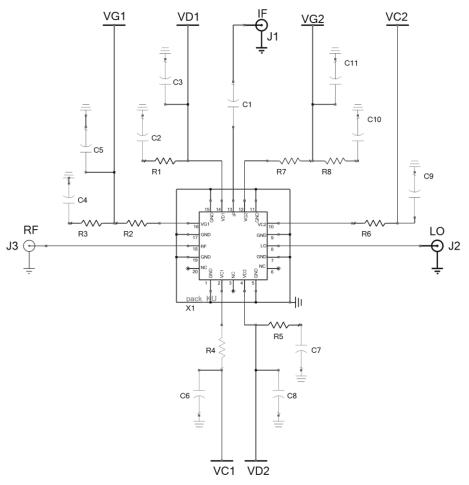
2.0 3.0



### Package Outline and PIN configuration



All dimensions are in mm.


It is strongly recommended to ground all pins marked "GND" through the PCB board. Ensure that the PCB board is designed to provide the best possible ground to the package.

Detailed package dimensions and characteristics are available upon request at <u>contact.mec@mec-</u> <u>mmic.com</u>

- 12/15 -



### **Application Circuit**



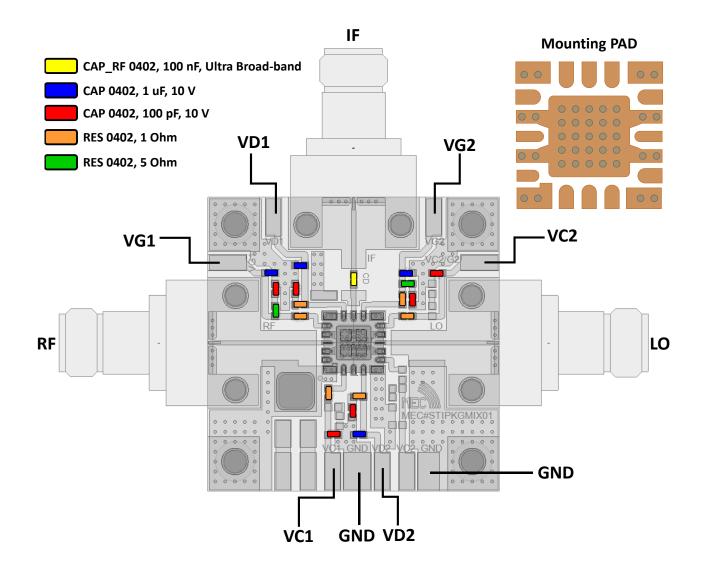
| Ref.                    | Component             | Value  | Description                            |
|-------------------------|-----------------------|--------|----------------------------------------|
| C1                      | SMT 0402 RF Capacitor | 100 nF | Ultrabroadband Decoupling<br>Capacitor |
| C2, C4, C6, C7, C9, C10 | SMT 0402 Capacitor    | 100 pF | Low Frequency Bypass Capacitor         |
| C3, C5, C8, C11         | SMT 0402 Capacitor    | 1 µF   | Low Frequency Bypass Capacitor         |
| R1, R2, R4, R5, R6, R7  | SMT 0402 Resistor     | 1 Ω    | Low power Resistor                     |
| R3, R8                  | SMT 0402 Resistor     | 5 Ω    | Low power Resistor                     |

#### **Bias-up Procedure**

- 1. VG set to -1.5 V.
- 2. VD set to +3 V.
- Adjust VG until quiescent Id is 104 mA (Vg = -0.4 V Typical).
- 4. Apply RF signals.

### **Bias-down Procedure**

- 1. Turn off RF signals.
- 2. Reduce VG to -1.5 V (Id0  $\approx$  0 mA).
- 3. Set Vd to 0 V.
- 4. Set Vg to 0 V.

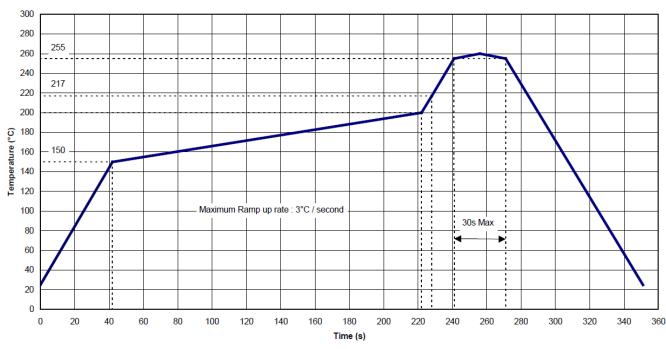

- 13/15 -

### MECSCDCU

### 12 - 15 GHz to 1 – 5.5 GHz DownConverter



#### **Evaluation Board and Assembly**




0.008" thick Rogers Corp. RO4003C ( $\mathcal{E}r = 3.35$ ). Metal layers 0.5 oz. copper cladding. Microstrip to Coplanar transition optimized to access the package. Microstrip to coplanar transition for connector interface optimized for the Southwest Microwave end launch 1492-04A-5.



#### Solderability and Recommended Soldering Temperature Profile

The package complies with standard surface mount assembly processes (J-STD-020). Peak reflow temperature of 260 °C. Leaded (SnPn) or RoHS leadless solder pasts (SnAgCu) can be used, having gold platted terminations with 0.8 µm minimum of gold (Au)



#### MAXIMUM RECOMMENDED REFLOW PROFILE for LEADFREE SMT ASSEMBLY PRODUCTS

#### **RoHS Compliance**

The product is compliant with the 2011/65/EU RoHS directive 2015/863/EU and REACH N° 1907/2006.

#### **Contact Information**

For additional technical Information and Requirements: contact.mec@mec-mmic.com

#### Notice

The furbished information is believed to be reliable. However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements, the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.

- 15/15 -