Q-K GaAs pHEMT Down Conversion Mixer

Product Description

MECMIXQK is a GaAs pHEMT based Subharmonic Mixer designed by MEC for Q-K down conversion applications and fabricated on 0.25 μ m process.

The MECMIXQK achieved 12dB of conversion loss in the RF frequency range from 47.2 GHz to 50.2 GHz with a LO leakage of -25 dBm and 2LO leakage of -55dBm. The higher in band spurious are about 50 dBc at an RF Input Power of -10 dBm (70 dBc at RF Input Power of -30 dBm)

The MECMIXQK is fully matched to 50Ω with DC decoupling capacitors on both Input and Output ports. Bond Pad are gold plated for compatibility with thermo-compression bonding process.

Main Features

- 0.25 µm pHEMT Technology
- Sub-Harmonic double-balanced unbiased diodes Mixer
- RF Input Frequency Range: 47.2 50.2 GHz
- IF Output Frequency Range: 17.3 20.2 GHz
- Conversion Loss: 12dB (Typ)
- LO Input Power: 10dBm (Typ)
- LO Frequency: 15 GHz
- P1dB_IN: >3dBm
- LO leakage: -23dBm (Max) 2LO leakage: -55dBm (Max)
- Chip Size: 2.4 x 2.4 x 0.1 mm

Applications

- Radar
- Telecom

Q-K GaAs pHEMT Down Conversion Mixer

Main Characteristics

Test Conditions:	$T_{base_plate} = 25^{\circ}C,$	Vd = 2.8	V, $Idq = 9$	90 mA, LC	$\mathbf{Power} = 1$	0dBm.

Parameter	Min	Тур	Max	Unit
RF frequency	47.2		50.2	GHz
IF frequency	17.2		20.2	GHz
LO frequency		15		GHz
2LO frequency		30		GHz
LO Input Power	8		10	dBm
Conversion Loss @ PinLO = 10dBm	-13.5	-10	-8.5	dB
LO leakage @ PinLO = 10dBm		-25		dBm
2LO leakage @ PinLO = 10dBm		-55		dBm
P1dB_IN		>3		dBm
In Band Spurious @ PinRF = -30 dBm	71	105	>130	dBc
Out of Band Spurious @ PinRF = -30 dBm	73	90	>130	dBc
Supply Quiescent LO Buffer Drain Current		90		mA
Supply LO Buffer Drain Current		110		mA
LO Buffer Gate Voltage		-0.4		V
LO Buffer Drain Voltage		2.8		V

* Performances described in this document are based on preliminary on-jig characterization. More details and new parameter will be carried out by the ongoing test campaign.

Q-K GaAs pHEMT Down Conversion Mixer

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Typical Measured Performances

Q-K GaAs pHEMT Down Conversion Mixer

[15-25] GHz Spurious Measurements in dBc @ P_RFin = -10 dBm

Q-K GaAs pHEMT Down Conversion Mixer

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

<u>- RF Frequency = 49.4 GHz</u>				<u>- RF Frequency = 50.0 GHz</u>									
LO\RF	1	2	3	4	5	6	LO\RF	1	2	3	4	5	6
1		-11,57					1		-13,26				
2							2						
3							3						
4							4						
5		71					5	62					
6							6						
7							7						
8		71					8		85				
9							9			>110*			
10							10						
11			>110*				11						
12				>110*			12				>110*		
13							13						
14							14						
15	_ In	Band Sn	urious		>110*		15				>110*		
16							16	In	Band Spi	irious			
17		ut of Ban	a Spurio	us			17						
18		onv. Loss			>110*		18		ut of Band	a Spuriou	S	>110*	
19							19	_ _ Co	onv. Loss				>110*
20							20						

* These spurious power levels were below the minimum level readably by the spectrum analyzer and corresponds to a dBc values greater than 110.

<u>Note:</u> At nominal operating condition the Mixer works with a RF Input Power of about -30 dBm; in this case the spurious generated by the combination (2*RF - N*LO) have to be considered at 20 dBc more than the values in the Table.

- 5/8 -

Q-K GaAs pHEMT Down Conversion Mixer

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Bond Pad Configuration

	-	2330.000 um	
	LÜ	VG -	VD
m			
2330.000		MEUMLXUK	
		IF	RF 🖸

- A tolerance of $\pm 35 \,\mu$ m has to be considered for chip dimensions
- Chip Thickness is $100 \ \mu m \pm 10 \ \mu m$
- RF Pad [IN] = $122 \,\mu m \, x \, 148 \,\mu m$
- LO Pad [IN] = 150 μm x 100 μm
- IF Pad [OUT] = 150 μm x 122 μm
- DC Pads [VG, VD] = 150 μm x 100 μm

Bond Pad #	Symbol	Description
RF	RFin	Input RF Port
LO	LO LOin Input LO Port	
IF IFout		Output IF Port
VG	Vg	Buffer Gate Negative Supply Voltage
VD Vd		Buffer Drain Positive Supply Voltage

Q-K GaAs pHEMT Down Conversion Mixer

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Assembly Recommendations

Bond Pad #	Connection	External Components	
RF, LO and IF	2x 0.25 μm Bonding Wires or 1x 100 μm Ribbon L_bond = 0.2nH		
VG	$L_{bond} \le 1 \text{ nH}$	C = 100 pF	
VD	1 Bonding Wires $L_{bond} \le 1nH$	C = 100 pF	

- Eutectic or Epoxy Die bond.
- The backside of the die is the Source (ground) contact.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- Gold wire must be used for connections.

Bias Procedure

Bias-Up

- 1. Vg set to -1.2 V.
- 2. Vd set to +2.8 V.
- 3. Adjust Vg until quiescent Id is 90 mA (Vg = -0.4 V Typical).
- 4. Apply LO signal. (PinLO = 10 dBm Typical).
- 5. Apply RF signal.

Bias-Down

- 1. Turn off RF signal.
- 2. Turn off LO signal.
- 3. Reduce Vg to -1.2 V (Id0 \approx 0 mA).
- 4. Set Vd to 0 V.
- 5. Set Vg to 0 V.

- 7/8 -

Q-K GaAs pHEMT Down Conversion Mixer

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Contact Information

For additional technical Information and Requirements:

Email: contact.mec@mec-mmic.com

Tel: +39 0516333403

For sales Information and Requirements:

Email: sales@mec-mmic.com

Tel: +39 0516333403

Notice

The furbished information is believed to be reliable.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.

- 8/8 -