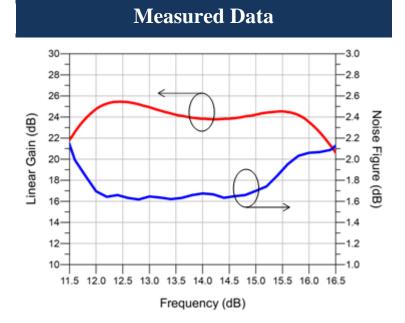

MECKULNA1

Ku-Band GaN HEMT Low Noise Amplifier

Product Description

MECKULNA1 is a 0.25µm GaN HEMT based Low Noise Amplifier designed by MEC for Ku-Band applications.

In the frequency range from 12 GHz to 16 GHz MECKULNA1 provides 24dB of linear gain, 1.7 dB of noise figure, P1dB of 21.5 dB and Output TOI of 30 dBm.


In addition to the high electrical performances, this GaN LNA provides an high level of input power robustness being capable of surviving up to 25 dBm without degrading its performance.

Main Features

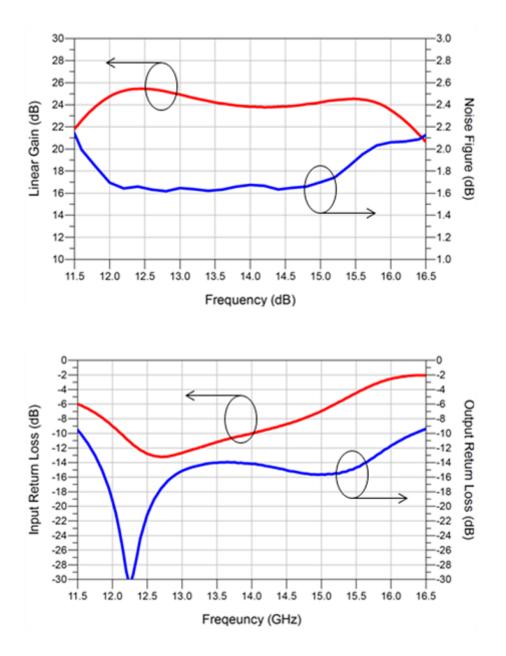
- 0.25 µm GaN HEMT Technology
- 12 16 GHz full performance Frequency Range
- Small Signal Gain > 24 dB
- Noise Figure: <1.7 (12 15 GHz)
- Noise Figure: <2 (15 16 GHz)
- P1dB > 21.5 dBm, Psat > 29 dBm
- Output TOI > 30 dBm
- Overdrive Pin > 25 dBm
- Bias: Vd = 15V, Id = 70 mA,
 Vg = -2.8 V (Typ.)
- Chip Size: 4 x 2 x 0.1 mm³

Typical Applications

- Radar
- Telecom

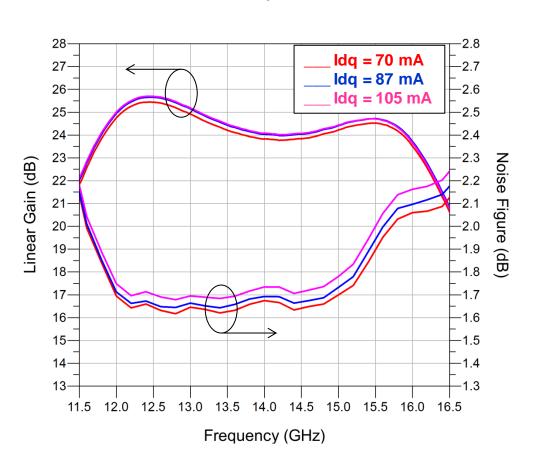
MECKULNA1

MICROWAVE ELECTRONICS FOR COMMUNICATIONS


Main Characteristics

Parameter	Min	Тур	Max	Unit
Operating frequency	12		16	GHz
Small Signal Gain		24		dB
Noise Figure		1.7	2.0	dB
Input Return Loss		-8		dB
Output Return Loss		-12		dB
Output Power at 1 dB of Gain Compression		21.5		dBm
Output Power at 5 dB of Gain Compression		29		dBm
Max. Overdrive Input Power *	25			dBm
Output TOI (1 MHz tone spacing)		30		dBm
3rd Order C/I at 8 dB of Backoff (1 MHz tone spacing)	38			dBc
3rd Order C/I at 5 dB of Backoff (1 MHz tone spacing)	32			dBc
Drain Supply Voltage		15		V
Supply Quiescent Drain Current		70		mA
DC Power Consumption		1.05		W
DC Power Consumption at 1 dB of Gain Compr.		1.42		W

* LNA ruggedness to overdrive input power data are available upon request.

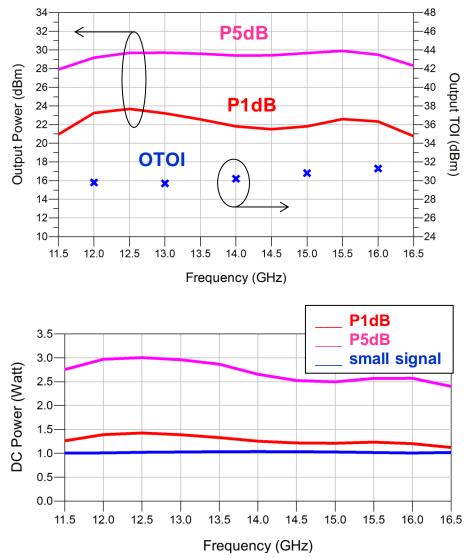

Linear Gain, Noise Figure, Input and Output Return Loss

Test Conditions: $T_{base_plate} = 25^{\circ}C$, Vd = 15 V, Idq = 70 mA

Linear Gain and Noise Figure over Quiescent Drain Current

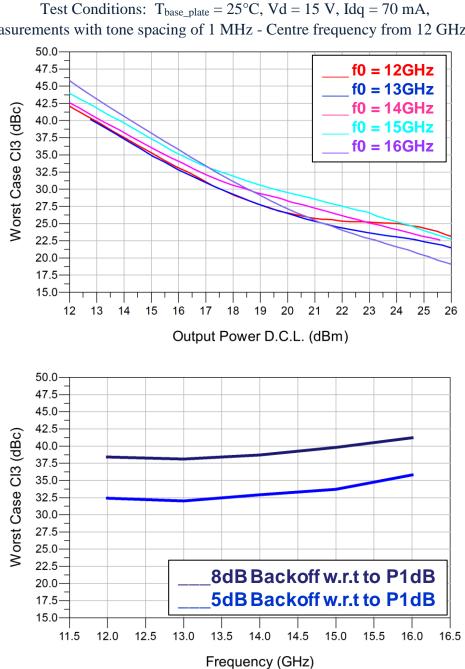
Test Conditions: $T_{base_plate} = 25^{\circ}C$, Vd = 15 V

- 4/8 -


Ku-Band GaN HEMT Low Noise Amplifier

Nonlinear Measurement: Output Power, OTOI, DC Power

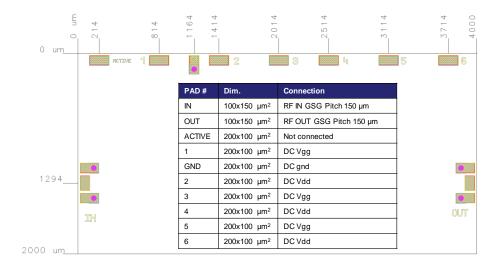
Test Conditions: $T_{base_plate} = 25^{\circ}C$, Vd = 15 V, Idq = 70 mA


- P1dB condition reached at Pin = 0 dBm
- P5dB condition reached at Pin = 11 dBm
- OTOI: 2 tone measurements with tone spacing of 1 MHz. Linear regression formula with Pin D.C.L. = [-12, -6] dBm

Ku-Band GaN HEMT Low Noise Amplifier

Nonlinear Measurement: 3rd Order Inter-Modulation Distortion

2-tone measurements with tone spacing of 1 MHz - Centre frequency from 12 GHz to 16 GHz



Ku-Band GaN HEMT Low Noise Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Bond Pad Configuration & Assembly Recommendations

אים	Bond Pad #	Connection	External Components
	IN and OUT	2 Bonding Wires L_bond = 0.3nH	
	1, 3, 5 Vg	$L_{bond} \le 1 \text{ nH}$	C1 = 100 pF/10V C2 = 10 nF/10V
	2, 4, 6, Vd	$L_{bond} \le 1nH$	C1 = 100 pF/50V C2 = 10 nF/50V

Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

Bias Procedure

Bias-Up

- 1. Vg set to 4 V.
- 2. Vd set to +15 V.
- 3. Adjust Vg until quiescent Id is 70 mA (Vg = -2.8 V Typical).
- 4. Apply RF signal.

Bias-Down

- 1. Turn off RF signal.
- 2. Reduce Vg to -4 V (Id0 \approx 0 mA).
- 3. Set Vd to 0 V.
- 4. Turn off Vd.
- 5. Turn off Vg.

- 7/8 -

MECKULNA1

Ku-Band GaN HEMT Low Noise Amplifier

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Contact Information

For additional technical Information and Requirements:

Email: contact.mec@mec-mmic.com

Tel: +39 0516333403

For sales Information and Requirements:

Email: sales@mec-mmic.com

Tel: +39 0516333403

Notice

The furbished information is believed to be reliable.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.

- 8/8 -