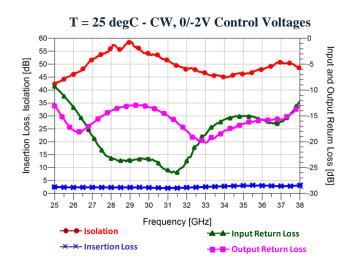

25 - 38 GHz Reflective SP4T

Product Description

MECKASP4TR is a 0.25µm GaAs pHEMT Ka Band Reflective SP4T Switch designed and tested by MEC for 25 - 38 GHz Band applications.

In the frequency range from 25 to 38 GHz MECKASP4TR provides less than 3 dB of small signal insertion loss and more than 45 dB of isolation, with negligible power consumption.

The Control Bias Voltages are from - 2 V to - 1.3 V (HIGH STATE) and from -0.2 V to 0.6V (LOW STATE).

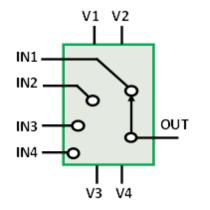

Main Features

- 0.25µm GaAs pHEMT Technology
- 25 38 GHz Frequency Range
- Insertion Loss $\leq 3 \text{ dB}$
- Isolation (RFin to NC Outputs) \geq 40 dB
- Input Return Loss \leq -10 dB
- Output Return Loss \leq -10 dB
- Power Consumption $\approx 0 \text{ W}$
- Reflective
- Control Bias Voltages: Vc = -2 / 0.6 V
- Chip Size: 2.40 x 3.40 x 0.10 mm³

Typical Applications

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space Hybrids
- Test Instrumentation
- SATCOM & Sensors

Measured Data


25 - 38 GHz Reflective SP4T

MICROWAVE ELECTRONICS FOR COMMUNICATIONS

Functional Diagram

Control Voltages

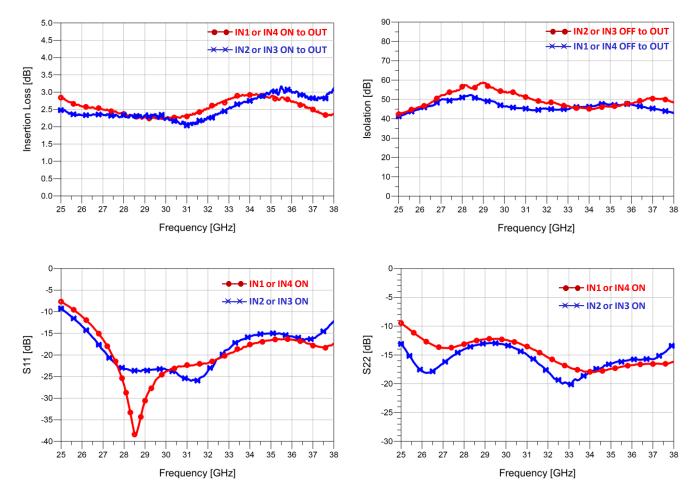
STATE	BIAS CONDITION
HIGH	-2 V to -1.3V
LOW	-0.2 V to 0.6V

True Table

Vc1	Vc2	Vc3	Vc4	STATE
HIGH	LOW	LOW	LOW	IN1 "ON" to OUT
LOW	HIGH	LOW	LOW	IN2 "ON" to OUT
LOW	LOW	HIGH	LOW	IN3 "ON" to OUT
LOW	LOW	LOW	HIGH	IN4 "ON" to OUT
LOW	LOW	LOW	LOW	N.C.

Main Characteristics

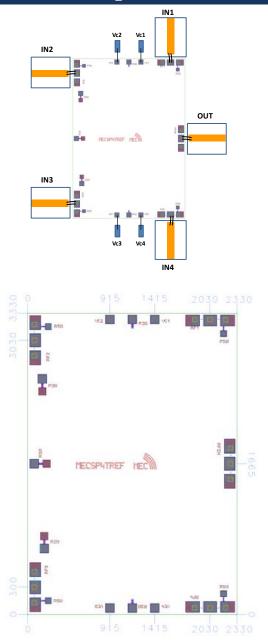
rest conditions. T _{base_plate} = 25 C - CW, 0/-2 V Control Voltages							
Parameter		Min	Тур	Max	Unit		
Operating frequency		25	-	38	GHz		
Insertion Loss	25 – 31 GHz	2.2	-	2.9	dB		
(IN1 or IN4 "ON" to OUT)	31 – 38 GHz	2.3	-	3.0	dB		
Insertion Loss	25 – 31 GHz	2.0	-	2.5	dB		
(IN2 or IN3 "ON" to OUT)	31 – 38 GHz	2.0	-	3.1	dB		
Isolation	25 – 31 GHz	40	-	-	dB		
(IN1 or IN4 "OFF" to OUT)	31 – 38 GHz	45	-	-	dB		
Isolation	25 – 31 GHz	40	-	-	dB		
(IN2 or IN3 "OFF" to OUT)	31 – 38 GHz	45	-	-	dB		
Input Return Loss (IN1 or IN4 "ON" to OUT)	25 - 31 GHz	-	-	-10	dB		
Input Return Loss (IN2 or IN3 "ON" to OUT)	25 - 31 GHz	-	-	-10	dB		
Output Return Loss (IN1 or IN4 "ON" to OUT)	25 - 31 GHz	-	-	-10	dB		
Output Return Loss (IN2 or IN3 "ON" to OUT)	25 - 31 GHz	-	-	-13	dB		
Control Current		-	≈0	-	mA		


Test Conditions: $T_{base_plate} = 25^{\circ}C - CW$, 0/-2V Control Voltages

- 3/6 -

25 - 38 GHz Reflective SP4T

Insertion Loss, Isolation and Return Loss



Test Conditions: Tbase_plate = 25°C - CW, 0/-2V Control Voltages

- 4/6 -

Bond Pad Configuration & Assembly Recommendations

Bias Procedure

Bias-Up

- 1. Set Vc1, Vc2, Vc3 and Vc4 to Control Voltage.
- 2. Apply RF signal.

Bond Pad #	Connection	External Components		
IN1, IN2, IN3, IN4 and OUT	2 Bonding Wires L_bond = 0.3nH			
Vc1, Vc2, Vc3 and Vc4	$L_{bond} \le 1 \text{ nH}$	No external components required (Internal Series Resistance: Rs=4kΩ)		

All dimensions are in μ m.

Eutectic Die bond using AuSn (80/20) solder is recommended.

The backside of the die is the Source (ground) contact.

Thermosonic ball or wedge bonding are the preferred connection methods.

Gold wire must be used for connections.

Bias-Down

- 1. Turn off RF signal.
- 2. Turn off Vc1, Vc2, Vc3 and Vc4.

- 5/6 -

25 - 38 GHz Reflective SP4T

MICROWAVE ELECTRONICS FOR COMMUNICATIO

Contact Information

For additional technical Information and Requirements:

Email: contact.mec@mec-mmic.com

Tel: +39 0516333403

For sales Information and Requirements:

Email: sales@mec-mmic.com

Tel: +39 0516333403

Notice

The furbished information is believed to be reliable. However, performances and specifications contained herein are based on preliminary characterizations and then susceptible to possible variations. On the basis of customer requirements, the product can be tested and characterized in specific operating conditions and, if needed, tuned to meet custom specifications.

The contents of this document are under the copyright of MEC srl. It is released by MEC srl on condition that it shall not be copied in whole, in part or otherwise reproduced (whether by photographic, reprographic, or any other method) and the contents thereof shall not be divulged to any person other than inside the company at which has been provided by MEC.

- 6/6 -